The German automaker said, using a Honeywell quantum computer to find more efficient ways to purchase the myriad components that go into its vehicles.

The car giant has begun using Honeywell machines, first the H0 and then the newer H1, to determine which components should be purchased from which supplier at what time to ensure the lowest cost while maintaining production schedules. For example, one BMW supplier might be faster while another is cheaper. The machine will optimize the choices from a cascade of options and sub options. Ultimately, BMW hopes this will mean nimbler manufacturing.

“We are excited to investigate the transformative potential of quantum computing on the automotive industry and are committed to extending the limits of engineering performance,” Julius Marcea, a BMW Group IT chief, said in a statement.

Quantum computing is the use of quantum phenomena such as superposition and entanglement to perform computation. Computers that perform quantum computations are known as quantum computers. Quantum computers are believed to be able to solve certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science.

Quantum computing began in the early 1980s, when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine. Richard Feynman and Yuri Manin later suggested that a quantum computer had the potential to simulate things that a classical computer could not. In 1994, Peter Shor developed a quantum algorithm for factoring integers that had the potential to decrypt RSA-encrypted communications. Despite ongoing experimental progress since the late 1990s, most researchers believe that “fault-tolerant quantum computing [is] still a rather distant dream. In recent years, investment into quantum computing research has increased in both the public and private sector. On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), claimed to have performed a quantum computation that is infeasible on any classical computer.

There are several models of quantum computers (or rather, quantum computing systems), including the quantum circuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum computer, and various quantum cellular automata. The most widely used model is the quantum circuit. Quantum circuits are based on the quantum bit, or “qubit”, which is somewhat analogous to the bit in classical computation. Qubits can be in a 1 or 0 quantum state, or they can be in a superposition of the 1 and 0 states. However, when qubits are measured the result of the measurement is always either a 0 or a 1; the probabilities of these two outcomes depend on the quantum state that the qubits were in immediately prior to the measurement.

The quantum race is already underway. Governments and private investors all around the world are pouring billions of dollars into quantum research and development. Satellite-based quantum key distribution for encryption has been demonstrated, laying the groundwork for a potential quantum security-based global communication network. IBM, Google, Microsoft, Amazon, and other companies are investing heavily in developing large-scale quantum computing hardware and software. Nobody is quite there yet. Even so, business leaders should consider developing strategies to address three main areas:

1.) planning for quantum security,

2.) indentifying use cases for quantum computing, and

3.) thinking through responsible design.

By planning responsibly, while also embracing future uncertainty, businesses can improve their odds of being ready for the quantum future.